Duan, Xiao-Yong team published research on Organic Letters in 2021 | 19005-93-7

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., Safety of 1H-Indole-2-carbaldehyde

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Safety of 1H-Indole-2-carbaldehyde.

Duan, Xiao-Yong;Tian, Zhaohui;Liu, Binghao;He, Tao;Zhao, Liang-Liang;Dong, Mengdie;Zhang, Pengna;Qi, Jing research published 《 Highly Enantioselective Synthesis of Pyrroloindolones and Pyrroloquinolinones via an N-Heterocyclic Carbene-Catalyzed Cascade Reaction》, the research content is summarized as follows. In this work, the NHC-catalyzed Michael/Mannich/lactamization cascade reaction of enals with either indole-2-carboxaldehyde-derived aldimines or indole-7-carboxaldehyde-derived aldimines is described. This protocol enables the rapid assembly of optically active pyrroloindolones, e.g., I, and pyrroloquinolinones derivatives, e.g., II, under mild conditions with high yields, excellent enantioselectivities, and a broad substrate scope.

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., Safety of 1H-Indole-2-carbaldehyde

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Drayton, Matthew team published research on Journal of Controlled Release in 2021 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). SDS of cas: 35737-15-6.

Drayton, Matthew;Alford, Morgan A.;Pletzer, Daniel;Haney, Evan F.;Machado, Yoan;Luo, Haiming D.;Overall, Christopher M.;Kizhakkedathu, Jayachandran N.;Hancock, Robert E. W.;Straus, Suzana K. research published 《 Enzymatically releasable polyethylene glycol – host defense peptide conjugates with improved activity and biocompatibility》, the research content is summarized as follows. Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biol. half-life have limited their applicability for clin. treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, resp., corresponding to a min. inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single s.c. dose (∼3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-d. methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, resp. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two D-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dong, Xiaojuan team published research on Organic Letters in 2020 | 771-51-7

Application of C10H8N2, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. Application of C10H8N2.

Dong, Xiaojuan;Wang, Ruige;Jin, Weiwei;Liu, Chenjiang research published 《 Electrochemical Oxidative Dehydrogenative Phosphorylation of N-Heterocycles with P(O)-H Compounds in Imidazolium-Based Ionic Liquid》, the research content is summarized as follows. A direct and green electrochem. oxidative cross-dehydrogenative coupling reaction of N-heterocycles with hydrogen phosphoryl compounds under external oxidant-free conditions is reported. Various phosphorylation products of substituted carbazoles and indoles are assembled in modest to excellent yields. A hydrogen release process is preliminarily demonstrated and H2 is the sole byproduct. An imidazolium based ionic liquid is selected as the optimal electrolyte.

Application of C10H8N2, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Ding, Chaohui team published research on Plant Journal in 2021 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., SDS of cas: 771-51-7

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. SDS of cas: 771-51-7.

Ding, Chaohui;Lin, Xianhui;Zuo, Ying;Yu, Zhilin;Baerson, Scott R.;Pan, Zhiqiang;Zeng, Rensen;Song, Yuanyuan research published 《 Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice》, the research content is summarized as follows. Tiller angle is an important determinant of plant architecture in rice (Oryza sativa L.). Auxins play a critical role in determining plant architecture; however, the underlying metabolic and signaling mechanisms are still largely unknown. In this study, we have identified a member of the bZIP family of TGA class transcription factors, OsbZIP49, that participates in the regulation of plant architecture and is specifically expressed in gravity-sensing tissues, including the shoot base, nodes and lamina joints. Transgenic rice plants overexpressing OsbZIP49 displayed a tiller-spreading phenotype with reduced plant height and internode lengths. In contrast, CRISPR/Cas9-mediated knockout of OsbZIP49 resulted in a compact architecture. Follow-up studies indicated that the effects of OsbZIP49 on tiller angles are mediated through changes in shoot gravitropic responses. Addnl., we provide evidence that OsbZIP49 activates the expression of indole-3-acetic acid-amido synthetases OsGH3-2 and OsGH3-13 by directly binding to TGACG motifs located within the promoters of both genes. Increased GH3-catalyzed conjugation of indole-3-acetic acid (IAA) in rice transformants overexpressing OsbZIP49 resulted in the increased accumulation of IAA-Asp and IAA-Glu, and a reduction in local free auxin, tryptamine and IAA-Glc levels. Exogenous IAA or naphthylacetic acid (NAA) partially restored shoot gravitropic responses in OsbZIP49-overexpressing plants. Knockout of OsbZIP49 led to reduced expression of both OsGH3-2 and OsGH3-13 within the shoot base, and increased accumulation of IAA and increased OsIAA20 expression levels were observed in transformants following gravistimulation. Taken together, the present results reveal the role transcription factor OsbZIP49 plays in determining plant architecture, primarily due to its influence on local auxin homeostasis.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., SDS of cas: 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Depuydt, Anne-Sophie team published research on ACS Pharmacology & Translational Science in 2021 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. These enzymes oxidize the ring so the substrate turns into Indigo. SDS of cas: 35737-15-6.

Depuydt, Anne-Sophie;Rihon, Jerome;Cheneval, Olivier;Vanmeert, Michiel;Schroeder, Christina I.;Craik, David J.;Lescrinier, Eveline;Peigneur, Steve;Tytgat, Jan research published 《 Cyclic Peptides as T-Type Calcium Channel Blockers: Characterization and Molecular Mapping of the Binding Site》, the research content is summarized as follows. T-type calcium (CaV3) channels play a crucial role in the generation and propagation of action potentials in excitable cells and are considered potential drug targets for the treatment of neurol. and cardiovascular diseases. Given the limited pharmacol. repertoire for these channels, there is a great need for novel potent and selective CaV3 channel inhibitors. In this study, we used Xenopus oocytes to heterologously express CaV3.1 channels and characterized the interaction with a small cyclic peptide, PnCS1. Using mol. modeling, PnCS1 was docked into the cryo-electron microscopy structure of the human CaV3.1 channel and mol. dynamics were performed on the resultant complex. The binding site of the peptide was mapped with the involvement of critical amino acids located in the pore region and fenestrations of the channel. More specifically, we found that PnCS1 reclines in the central cavity of the pore domain of the CaV3.1 channel and resides stably between the selectivity filter and the intracellular gate, blocking the conduction pathway of the channel. Using Multiple Attribute Positional Scanning approaches, we developed a series of PnCS1 analogs. These analogs had a reduced level of inhibition, confirming the importance of specific residues and corroborating our modeling. In summary, functional studies of PnCS1 on the CaV3.1 channel combined with mol. dynamics results provide the basis for understanding the mol. interactions of PnCS1 with CaV3.1 and are fundamental to structure-based drug discovery for treating CaV3 channelopathies.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Deng, Xingwang team published research on Angewandte Chemie, International Edition in 2021 | 35737-15-6

Name: Fmoc-Trp-OH, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Name: Fmoc-Trp-OH.

Deng, Xingwang;Zhou, Guan;Tian, Jing;Srinivasan, Rajavel research published 《 Chemoselective Amide-Forming Ligation Between Acylsilanes and Hydroxylamines Under Aqueous Conditions》, the research content is summarized as follows. We report the facile amide-forming ligation of acylsilanes R1COSiMe3 with hydroxylamines R2NHOCONEt2 (ASHA ligation) under aqueous conditions, yielding amides R1CONHR2 in a chemoselective way in MeCN/H2O mixtures catalyzed by citric acid. The ligation is fast, chemoselective, mild, high-yielding and displays excellent functional-group tolerance. Late-stage modifications of an array of marketed drugs, peptides, natural products, and biol. active compounds showcase the robustness and functional-group tolerance of the reaction. The key to the success of the reaction could be the possible formation of the strong Si-O bond via a Brook-type rearrangement. Given its simplicity and efficiency, this ligation has the potential to unfold new applications in the areas of medicinal chem. and chem. biol.

Name: Fmoc-Trp-OH, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Deng, Hao team published research on Food Chemistry: Molecular Sciences in 2021 | 771-51-7

Quality Control of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Quality Control of 771-51-7.

Deng, Hao;Yin, Qingchun;Lin, Yuqin;Feng, Jiancheng;Chen, Zhe;Zhang, Ronghu research published 《 Analysis on quality differences associated with metabolomics of rambutan during different temperature storage》, the research content is summarized as follows. This study aimed to understand how temperatures differentially impact the crucial quality indexes and metabolites in rambutan during storage. Rambutan browned quickly at room temperature from 0 d (control). After ten days at 5°C, browning index and lightness were 4.2% and 147.5%, compared with rambutan stored at 1°C, which was the best quality achieved. An UPLC-MS/MS was performed to uncover the metabolism underlying those quality differences, followed by the anal. of KEGG pathways. Results showed that 276 differentially expressed metabolites (DEMs) screened were enriched in 18 KEGG pathways. The pathways related to carbohydrates, aliphatic metabolites, and organic acids were highly active in rambutan stored at room temperature, whereas the pathways related to amino acids biosynthesis and nucleotides were highly active in rambutan stored at 1°C, 5°C. These findings indicated that increased scopoline was associated with serious browning at room temperature L-leucine and L-isoleucine both increased in response to low temperature and reduced browning. Glutathione and ascorbate decreased to 4.89% and 4.36%, compared with 0 d (CK) in rambutan with severe browning stored at 1°C for ten days. However, no significant changes in those two metabolites were observed in rambutan stored at optimal 5°C for ten days. Thus glutathione and ascorbate could be used as potential indicators of browning degree. Our study provided a metabolic insight into the role of temperature on rambutan quality and browning.

Quality Control of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dawidowski, Maciej team published research on Journal of Medicinal Chemistry in 2020 | 19005-93-7

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., Product Details of C9H7NO

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 19005-93-7, formula is C9H7NO, Name is 1H-Indole-2-carbaldehyde. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Product Details of C9H7NO.

Dawidowski, Maciej;Kalel, Vishal C.;Napolitano, Valeria;Fino, Roberto;Schorpp, Kenji;Emmanouilidis, Leonidas;Lenhart, Dominik;Ostertag, Michael;Kaiser, Marcel;Kolonko, Marta;Tippler, Bettina;Schliebs, Wolfgang;Dubin, Grzegorz;Maeser, Pascal;Tetko, Igor V.;Hadian, Kamyar;Plettenburg, Oliver;Erdmann, Ralf;Sattler, Michael;Popowicz, Grzegorz M. research published 《 Structure-Activity Relationship in Pyrazolo[4,3-c]pyridines, First Inhibitors of PEX14-PEX5 Protein-Protein Interaction with Trypanocidal Activity》, the research content is summarized as follows. Trypanosoma protists are pathogens leading to a spectrum of devastating infectious diseases. The range of available chemotherapeutics against Trypanosoma is limited, and the existing therapies are partially ineffective and cause serious adverse effects. Formation of the PEX14-PEX5 complex is essential for protein import into the parasites’ glycosomes. This transport is critical for parasite metabolism and failure leads to mislocalization of glycosomal enzymes, with fatal consequences for the parasite. Hence, inhibiting the PEX14-PEX5 protein-protein interaction (PPI) is an attractive way to affect multiple metabolic pathways. Herein, we have used structure-guided computational screening and optimization to develop the first line of compounds that inhibit PEX14-PEX5 PPI. The optimization was driven by several X-ray structures, NMR binding data, and mol. dynamics simulations. Importantly, the developed compounds show significant cellular activity against Trypanosoma, including the human pathogen Trypanosoma brucei gambiense and Trypanosoma cruzi parasites.

19005-93-7, 1H-Indole-2-carbaldehyde is a useful research compound. Its molecular formula is C9H7NO and its molecular weight is 145.16 g/mol. The purity is usually 95%.
1H-Indole-2-carbaldehyde is a useful research chemical used as a reactant in the synthesis of substituted 2-amino-4H-chromenes and benzochromenes using K2CO3 as catalyst.
1H-Indole-2-carbaldehyde is a solvent that has been used in the protein data and molecular modeling study. The 1H NMR spectrum of this compound showed an intense signal at δ 4.8 ppm, corresponding to the hydroxyl proton. This solvent also has fluorescence properties, as shown by its photophysical and structural analysis. The 1H-indole-2-carbaldehyde molecule has an active methylene group and an oxindole ring with amine substituents., Product Details of C9H7NO

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dani, Kaidala Ganesha Srikanta team published research on New Phytologist in 2022 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Electric Literature of 771-51-7

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. Electric Literature of 771-51-7.

Dani, Kaidala Ganesha Srikanta;Loreto, Francesco research published 《 Plant volatiles as regulators of hormone homeostasis》, the research content is summarized as follows. A review. Some canonical plant hormones such as auxins and gibberellins have precursors that are biogenic volatiles (indole, indole acetonitrile, phenylacetaldoxime and ent-kaurene). Cytokinins, abscisic acid and strigolactones are hormones comprising chem. moieties that have distinct volatile analogs, and are synthesized alongside constitutively emitted volatiles (isoprene, sesquiterpenes, lactones, benzenoids and apocarotenoid volatiles). Nonvolatile hormone analogs and biogenic volatile organic compounds (BVOCs) evolved in tandem as growth and behavioral regulators in unicellular organisms. In plants, however, nonvolatile hormones evolved as regulators of growth, development and differentiation, while endogenous BVOCs (often synthesized lifelong) became subtle regulators of hormone synthesis, availability, activity and turnover, all supported by functionally redundant components of hormone metabolism Reciprocal changes in the abundance and activity of hormones, nitric oxide, and constitutive plant volatiles constantly bridge retrograde and anterograde signalling to maintain hormone equilibrium even in unstressed plants. This is distinct from transient interference in hormone signalling by stress-induced and exogenously received volatiles.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Electric Literature of 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dai, Shijie team published research on Journal of Medicinal Chemistry in 2021 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Category: indole-building-block

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Category: indole-building-block.

Dai, Shijie;Hong, Haofei;Zhou, Kun;Zhao, Kai;Xie, Yuntian;Li, Chen;Shi, Jie;Zhou, Zhifang;Nie, Lei;Wu, Zhimeng research published 《 Exendin 4-Hapten Conjugate Capable of Binding with Endogenous Antibodies for Peptide Half-life Extension and Exerting Long-Acting Hypoglycemic Activity》, the research content is summarized as follows. Hapten-specific endogenous antibodies are naturally occurring antibodies present in human blood. Herein, we investigated a new strategy in which small-mol. haptens were utilized as naturally occurring antibody binders for peptide half-life extension. The glucagon-like peptide 1 receptor agonist exendin 4 was site-specifically functionalized with the dinitrophenyl (DNP) hapten at the C-terminus via sortase A-mediated ligation. The resulting Ex4-DNP conjugates retained GLP-1 receptor activation potency in vitro and had a similar in vivo acute glucose-lowering effect comparable to that of native Ex4. Pharmacokinetic studies and hypoglycemic duration tests demonstrated that the Ex4-DNP conjugates displayed significantly elongated half-lives and improved long-acting antidiabetic activity in the presence of endogenous anti-DNP antibodies. In chronic treatment studies, once-daily administration of optimal conjugate 7 demonstrated more beneficial effects without prominent toxicity compared with Ex4. This strategy provides a new approach and represents an alternative to the well-established peptide-Fc fusion strategy to improve the peptide half-life and the therapeutic efficacy.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Category: indole-building-block

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles