771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Electric Literature of 771-51-7
Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Electric Literature of 771-51-7.
Hou, Xianbang;Zhang, Xueyuan;Bi, Jingting;Zhu, Anhong;He, Liwei research published 《 Indole-3-carboxaldehyde regulates RSV-induced inflammatory response in RAW264.7 cells by moderate inhibition of the TLR7 signaling pathway》, the research content is summarized as follows. Human respiratory syncytial virus (RSV) is highly contagious and the leading cause of severe respiratory tract illness in infants, elderly, and immunocompromised individuals. Toll-like receptor 7 (TLR7), a pattern recognition receptor recognising the ssRNA of RSV, activates proinflammatory pathways and triggers secretion of interferons (IFNs). On the one hand, the inflammatory responses help clear out virus. On the other hand, they lead to severe lung damage. Banlangen is a traditional Chinese herbal medicine commonly prescribed for respiratory virus infection treatment, but the mechanisms of action and active components remain largely unknown. In the present study, we investigated the effects of the main active components of total alkaloids from banlangen (epigoitrin, indole-3-carboxaldehyde, indole-3-acetonitrile and 4-methoxyindole-3-acetonitrile) on the RSV-induced inflammatory responses in mouse macrophage cells (RAW264.7). Our results demonstrated that RSV-induced IFN-α excessive secretion was moderately inhibited by indole-3-carboxaldehyde through downregulation of mRNA expression in a dose-dependent manner, in comparison, the inhibitory effects of ribavirin were too strong. Furthermore, we revealed that indole-3-carboxaldehyde suppressed transcription of IFN-α by inhibiting RSV-induced TLR7 expression in RAW264.7 cells. Addnl., indole-3-carboxaldehyde inhibited RSV-induced NF-κB signalling activation in a TLR7-MyD88-dependent manner. Together, our findings suggest that indole-3-carboxaldehyde inhibited RSV-induced inflammatory injury by moderate regulation of TLR7 signaling pathway and did not significantly affect the viral clearance competence of the innate immune system.
771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Electric Literature of 771-51-7
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles