Klegeris, Andis published the artcileReduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor, Product Details of C23H23ClN2O4, the publication is British Journal of Pharmacology (2003), 139(4), 775-786, database is CAplus and MEDLINE.
Two cannabinoid receptors, CB1 and CB2, have been identified. The CB1 receptor is preferentially expressed in brain, and the CB2 receptor in cells of leukocyte lineage. We identified the mRNA for the CB1 receptor in human neuroblastoma SH-SY5Y cells, and the mRNA and protein for the CB2 receptor in human microglia and THP-1 cells. Δ9-And Δ8-tetrahydrocannabinol (THC) were toxic when added directly to SH-SY5Y neuroblastoma cells. The toxicity of Δ9-THC was inhibited by the CB1 receptor antagonist SR141716A but not by the CB2 receptor antagonist SR144528. The endogenous ligand anandamide was also toxic, and this toxicity was enhanced by inhibitors of its enzymic hydrolysis. The selective CB2 receptor ligands JWH-015 and indomethacin morpholinylamide (BML-190), when added to THP-1 cells before stimulation with lipopolysaccharide (LPS) and IFN-γ, reduced the toxicity of their culture supernatants to SH-SY5Y cells. JWH-015 was more effective against neurotoxicity of human microglia than THP-1 cells. The antineurotoxic activity of JWH-015 was blocked by the selective CB2 receptor antagonist SR144528, but not by the CB1 receptor antagonist SR141716A. This activity of JWH-015 was synergistic with that of the 5-lipoxygenase (5-LOX) inhibitor REV 5901. Cannabinoids inhibited secretion of IL-1β and tumor necrosis factor-α (TNF-α) by stimulated THP-1 cells, but these effects could not be directly correlated with their antineurotoxic activity. Specific CB2 receptor ligands could be useful anti-inflammatory agents, while avoiding the neurotoxic and psychoactive effects of CB1 receptor ligands such as Δ9-THC.
British Journal of Pharmacology published new progress about 2854-32-2. 2854-32-2 belongs to indole-building-block, auxiliary class GPCR/G Protein,Cannabinoid Receptor, name is 2-(1-(4-Chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-1-morpholinoethanone, and the molecular formula is C23H23ClN2O4, Product Details of C23H23ClN2O4.
Referemce:
https://www.nature.com/articles/s41429-020-0333-2,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles