Journal of Medicinal Chemistry published new progress about Autoimmune disease. 101083-92-5 belongs to class indole-building-block, and the molecular formula is C7H5N3O2, Recommanded Product: 5-Nitro-1H-pyrrolo[2,3-b]pyridine.
Schnute, Mark E.; Wennerstal, Mattias; Alley, Jennifer; Bengtsson, Martin; Blinn, James R.; Bolten, Charles W.; Braden, Timothy; Bonn, Tomas; Carlsson, Bo; Caspers, Nicole; Chen, Ming; Choi, Chulho; Collis, Leon P.; Crouse, Kimberly; Farnegardh, Mathias; Fennell, Kimberly F.; Fish, Susan; Flick, Andrew C.; Goos-Nilsson, Annika; Gullberg, Hjalmar; Harris, Peter K.; Heasley, Steven E.; Hegen, Martin; Hromockyj, Alexander E.; Hu, Xiao; Husman, Bolette; Janosik, Tomasz; Jones, Peter; Kaila, Neelu; Kallin, Elisabet; Kauppi, Bjorn; Kiefer, James R.; Knafels, John; Koehler, Konrad; Kruger, Lars; Kurumbail, Ravi G.; Kyne, Robert E.; Li, Wei; Lofstedt, Joakim; Long, Scott A.; Menard, Carol A.; Mente, Scot; Messing, Dean; Meyers, Marvin J.; Napierata, Lee; Noteberg, Daniel; Nuhant, Philippe; Pelc, Matthew J.; Prinsen, Michael J.; Rhonnstad, Patrik; Backstrom-Rydin, Eva; Sandberg, Johnny; Sandstrom, Maria; Shah, Falgun; Sjoberg, Maria; Sundell, Aron; Taylor, Alexandria P.; Thorarensen, Atli; Trujillo, John I.; Trzupek, John D.; Unwalla, Ray; Vajdos, Felix F.; Weinberg, Robin A.; Wood, David C.; Xing, Li; Zamaratski, Edouard; Zapf, Christoph W.; Zhao, Yajuan; Wilhelmsson, Anna; Berstein, Gabriel published the artcile< Discovery of 3-Cyano-N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide: A Potent, Selective, and Orally Bioavailable Retinoic Acid Receptor-Related Orphan Receptor C2 Inverse Agonist>, Recommanded Product: 5-Nitro-1H-pyrrolo[2,3-b]pyridine, the main research area is cyanophenylamido isobutyrylpiperidinyl trifluoromethyl pyrrolopyridine preparation retinoic acid receptor; retinoic acid receptor related orphan receptor C2 inverse agonist; cyanobenzamide isobutyrylpiperidinyl pyrrolopyridinyl trifluoromethyl preparation retinoic acid receptor.
The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as RORγt) is a promising target for the treatment of autoimmune diseases. A small mol., inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, authors identified a mol. displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms. Lead optimization to improve the potency and metabolic stability of this hit focused on two key design strategies, namely, iterative optimization driven by increasing lipophilic efficiency and structure-guided conformational restriction to achieve optimal ground state energetics and maximize receptor residence time. This approach successfully identified 3-cyano-N-(3-(1-isobutyrylpiperidin-4-yl)-1-methyl-4-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridin-5-yl)benzamide as a potent and selective RORC2 inverse agonist, demonstrating good metabolic stability, oral bioavailability, and the ability to reduce IL-17 levels and skin inflammation in a preclin. in vivo animal model upon oral administration.
Journal of Medicinal Chemistry published new progress about Autoimmune disease. 101083-92-5 belongs to class indole-building-block, and the molecular formula is C7H5N3O2, Recommanded Product: 5-Nitro-1H-pyrrolo[2,3-b]pyridine.
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles