Simple exploration of 1059630-08-8

1059630-08-8 (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate 59317960, aindole-building-block compound, is more and more widely used in various fields.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1059630-08-8,(4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate,as a common compound, the synthetic route is as follows.

Example 4: Production of [4aS,9bR] -ethyl 5-(2-amino-2-oxoethyl)-6-bromo- 3,4,4a,5-tetrahydro-lH-pyrido[4,3-b]indole-2(9bH)-carboxylate; (4aS,9bR)-ethyl 5-(2-amino-2-oxoethyl)-6-bromo-3,4,4a,5-tetrahydro- lH-pyrido[4,3-b]indole-2(9bH)-carboxylate may be prepared by heating to a reflux a suspension of (4aS,9bR)-ethyl 6-bromo-3,4,4a,5-tetrahydro- 1 H-pyrido[4,3-b]indole- 2(9bH)-carboxylate (5.648g, 17.4mmol), 2-chloroacetamide (7.32g, 78.2mmol), potassium iodide (19.2g, 77.7mol) and diisopropylethylamine (19mL, 115mmol) in acetonitrile (8OmL) for 27 hours. The solvent is removed in a vacuo and water (20OmL) is added to the residue and stirred for 1 hour. The resulting white solid is filtered off, washed with ethanol and dried., 1059630-08-8

1059630-08-8 (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate 59317960, aindole-building-block compound, is more and more widely used in various fields.

Reference:
Patent; INTRA-CELLULAR THERAPIES, INC.; WO2008/112280; (2008); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

New learning discoveries about 1059630-08-8

As the paragraph descriping shows that 1059630-08-8 is playing an increasingly important role.

1059630-08-8, (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate is a indole-building-block compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1059630-08-8, (4aS,9bR)-ethyl 5-(2-amino-2-oxoethyl)-6-bromo-3,4,4a,5-tetrahydro-lH- pyrido[4,3-b]indole-2(9bH)-carboxylate may be prepared by heating to a reflux a suspension of (4aS,9bR)-ethyl 6-bromo-3,4,4a,5-tetrahydro-lH-pyrido[4,3-b]indole- 2(9bH)-carboxylate (5.648g, l7.4mmol), 2-chloroacetamide (7.32g, 78.2mmol), potassium iodide (19.2g, 77.7mol) and diisopropylethylamine (l9mL, H5mmol) in acetonitrile (80mL) for 27 hours. The solvent is removed in a vacuo and water (200mL) is added to the residue and stirred for 1 hour. The resulting white solid is filtered off, washed with ethanol and dried.

As the paragraph descriping shows that 1059630-08-8 is playing an increasingly important role.

Reference:
Patent; INTRA-CELLULAR THERAPIES, INC.; LI, Peng; ZHANG, Qiang; (113 pag.)WO2019/241278; (2019); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Downstream synthetic route of 1059630-08-8

1059630-08-8, As the paragraph descriping shows that 1059630-08-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1059630-08-8,(4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate,as a common compound, the synthetic route is as follows.

To a degassed mixture of (4aS,9bR)-ethyl 6-bromo-3,4,4a,5- tetrahydro-lH-pyrido[4,3-b]indole-2(9bH)-carboxylate (1.60 g, 8.0 mmol), 2-chloro-2,2- dideuterio-N-methylacetamide (1.74 g, 16 mmol), and KI (2.68 g, l6mmol) in dioxane (28 mL), diisopropylethylamine (2.8 mL, 16 mmol) is added at room temperature. The reaction mixture is then heated to 104 C under vigorous stirring for 20 h. Solvents are removed under vacuum and the residue is suspended in dichloromethane (50 mL) and extracted with water (20 mL). The organic phase is separated, dried over K2CO3 and concentrated to a residue. (0256) The product is purified by silica gel column chromatography using a gradient of 0 – 100% mixed solvents [ethyl acetate/methanol (10 : 1 v/v) ] in ethyl acetate to yield (4aS,9bR)-ethyl 6-bromo-5-(l,l-dideuterio-2-(methylamino)-2-oxoethyl)-3,4,4a,5-tetrahydro-lH-pyrido[4,3- b]indole-2(9bH)-carboxylate a brown solid (1.15 g, yield 36%). MS (ESI) m/z 398.1 [M+l] +.

1059630-08-8, As the paragraph descriping shows that 1059630-08-8 is playing an increasingly important role.

Reference:
Patent; INTRA-CELLULAR THERAPIES, INC.; LI, Peng; DAVIS, Robert; (46 pag.)WO2019/183546; (2019); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Analyzing the synthesis route of 1059630-08-8

1059630-08-8, The synthetic route of 1059630-08-8 has been constantly updated, and we look forward to future research findings.

1059630-08-8, (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate is a indole-building-block compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Step 1 : To a degassed mixture of (4aS,9bR)-ethyl 6-bromo-3,4,4a,5-tetrahydro- lH-pyrido[4,3-b]indole-2(9bH)-carboxylate (1.60 g, 8.0 mmol), 2-chloro-2,2-di- deuteri oacetam i de (2.5 g, 26 mmol), and KI (2.68 g, l6mmol) in dioxane (30 mL), diisopropylethylamine (3.0 mL, 16 mmol) is added at room temperature. The reaction mixture is then heated to 104 C under vigorous stirring for 5 days. Solvents are removed under vacuum and the residue is suspended in dichloromethane (50 mL) and extracted with water (20 mL). The organic phase is separated, dried over anhydrous K2CO3 and (0280) concentrated to a residue. The product is purified by silica gel column chromatography using a gradient of 0 – 100% ethyl acetate in hexanes to obtain (4aS,9bR)-ethyl 5-(2-amino- 1 , 1 -di- 2-oxoethyl)-6-bromo-3,4,4a,5-tetrahydro-lH-pyrido[4,3-b]indole-2(9bH)-carboxylate as a brown oil (1.26 g, yield 41%). MS (ESI) m/z 384.1 [M+l]. The synthesis of the starting material is disclosed in US 2010/113781. The reaction scheme is shown below:

1059630-08-8, The synthetic route of 1059630-08-8 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; INTRA-CELLULAR THERAPIES, INC.; LI, Peng; ZHANG, Qiang; DAVIS, Robert; (63 pag.)WO2019/183341; (2019); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Brief introduction of 1059630-08-8

1059630-08-8, The synthetic route of 1059630-08-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1059630-08-8,(4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate,as a common compound, the synthetic route is as follows.

Example 5-A: Production of (6bR,10aS)-ethyI 2,3,6b,9,10,10a-hexahydro-2-oxo-lH- pyrido [3 ‘,4’ :4,5]-py rrolo [1 ,2,3-de] quinoxaline-8-carboxy late; Alternative to Example 5 above, (6bR, 1 OaS)-ethyl 3,6b,9, 10, 1 Oa- hexahydro-3 -methyl-2-oxo- 1 H-pyrido [3 ‘ ,4 ‘ :4,5]-pyrrolo [ 1 ,2,3 -de]quinoxaline-8- carboxylate may also be made in a one pot method starting from Compound of Formula ID. A 2 liter 4 neck round bottom flask is equipped with a mechanical stirrer, reflux condenser, N2 inlet, teflon covered K-type temperature probe with a controller, and a heating mantle. To the flask is charged (4aS,9bR)-ethyl 6-bromo-3,4,4a,5-tetrahydro- lH-pyrido[4,3-b]indole-2(9bH)-carboxylate (250 g, 769 mmol), chloroacetamide (124 g, 1153 mmol, 1.5 equiv), potassium iodide (191.5 g, 1160 mmol, 1.5 equiv), diisopropyl ethylamine (266 mL, 1531 mmol, 2.0 equiv), and dioxane (625 mL). The reaction is heated to reflux temperature of about 103 0C until less than 3% of the starting substrate is observed by HPLC (about 48 hours). Additional charge of N- methyl chloroacetamide and diisopropyl ethylamine maybe necessary. The reaction is then cooled to ca. 80 0C, and at this temperature copper iodide (29.2 g, 153.8 mmol, 0.2 equiv), potassium carbonate (232.5 g, 1682 mmol, 2.2 equiv), dimethylethylene diamine (49.6 mL, 461 mmol, 0.6 equiv), and additional dioxane (375 mL) is added. The reaction is then re-heated to reflux and is monitored by HPLC. Reflux occurs at ca. 103 0C. The reaction is monitored by HPLC.; Example 6-A: Production of (6bR,10aS)-ethyl 2,3,6b,9,10,10a-hexahydro-3-methyl- 2-oxo-lH-pyrido[3%4′:4,5]-pyrrolo[l,2,3-de]quinoxaline-8-carboxylate; Alternative to Example 6 above, (6bR, 1 OaS)-ethyl 3,6b,9, 10, 1 Oa- hexahydro-3-methyl-2-oxo-lH-pyrido[3′,4’:4,5]-pyrrolo[l,2,3-de]quinoxaline-8- carboxylate may also be made in a one pot method starting from Compound of Formula ID. A 2 liter 4 neck round bottom flask is equipped with a mechanical stirrer, reflux condenser, N2 inlet, teflon covered K-type temperature probe with a controller, and a heating mantle. To the flask is charged (4aS,9bR)-ethyl 6-bromo-3,4,4a,5-tetrahydro- lH-pyrido[4,3-b]indole-2(9bH)-carboxylate (250 g, 769 mmol), N-methyl chloroacetamide (124 g, 1153 mmol, 1.5 equiv), potassium iodide (191.5 g, 1160 mmol, 1.5 equiv), diisopropyl ethylamine (266 mL, 1531 mmol, 2.0 equiv), and dioxane (625 mL). The reaction is heated to reflux temperature of about 103 0C until less than 3% of the starting substrate is observed by HPLC (about 48 hours). Additional charge of N- methyl chloroacetamide and diisopropyl ethylamine maybe necessary. The reaction is then cooled to ca. 80 0C, and at this temperature copper iodide (29.2 g, 153.8 mmol, 0.2 equiv), potassium carbonate (232.5 g, 1682 mmol, 2.2 equiv), dimethylethylene diamine (49.6 mL, 461 mmol, 0.6 equiv), and additional dioxane (375 mL) is added. The reaction is then re-heated to reflux and is monitored by HPLC. Reflux occurs at ca. 103 0C. The reaction is monitored by HPLC.[0090] When complete, the reaction is cooled to ca. 40 0C and poured onto a plug of flash-grade silica gel (625 g, 2.5 g/g). It is eluted (under vacuum) with 6.25 L of ethyl acetate. The eluent is concentrated to a solid residue (320 gm), and then is dissolved in hot ethanol (800 ml). This mixture is allowed to cool to ambient temperature and stirred overnight. The next day it is cooled to 0-50C, aged for Ih and filtered. The cake is washed with cold ethanol (150 ml) and allowed to air dry to afford 170 grams (70%) of product as a white solid which is >99A% pure by HPLC. HPLC 10:90 to 90:10 CH3CN:H2O over 15 min. Hold at 90:10 for 2 min, 0.025% TFA Buffer, 1.5 mL/min, UV at 220 run, Phenomenex Jupiter Cl 8 column 4.6 mm x 250 mm. The product is 75A% pure by LC/MS in the total ion chromatogram. 1H-NMR (300MHz, CDCl3) 1.28(t, J= 6.9Hz, 3H), 1.86-1.96(m, 2H), 2.72(br, IH), 3.09-3.48(m, 7H), 3.86- 4.21(m, 5H), 6.75(dd, J= 1.2, 7.8Hz, IH), 6.82(t, J= 7.8Hz, IH), 6.90(dd, J= 1.2, 7.2Hz, IH).

1059630-08-8, The synthetic route of 1059630-08-8 has been constantly updated, and we look forward to future research findings.

Reference:
Patent; INTRA-CELLULAR THERAPIES, INC.; WO2008/112280; (2008); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Some tips on 1059630-08-8

1059630-08-8 (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate 59317960, aindole-building-block compound, is more and more widely used in various fields.

1059630-08-8, (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate is a indole-building-block compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

1.000 equivalents of ethyl (4aS,9bR)-6-bromo-l,3,4,4a,5,9b-hexahydro-2H- pyrido[4,3-b]indole-2-carboxylate is charged into a reactor with 0.50 volumes of dimethylacetamide solvent at 20 C. A solution of 1.500 equivalents of N-methyl chloroacetamide in 0.30 volumes of dimethylacetamide is added, followed by 1.000 equivalents of potassium iodide, and 1.700 equivalents of diisopropylethylamine. The resulting suspension is heated at 102 C for 15 to 18 hours. After cooling to 45 C, 5.00 volumes of water are added. After further cooling and agitation, the product is isolated as a solid filter cake and is washed with additional water and dried under vacuum., 1059630-08-8

1059630-08-8 (4aS,9bR)-Ethyl 6-bromo-3,4,4a,5-tetrahydro-1H-pyrido[4,3-b]indole-2(9bH)-carboxylate 59317960, aindole-building-block compound, is more and more widely used in various fields.

Reference:
Patent; INTRA-CELLULAR THERAPIES, INC.; LI, Peng; ZHANG, Qiang; (113 pag.)WO2019/241278; (2019); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles