Interested yet? Keep reading other articles of 56296-18-5, you can contact me at any time and look forward to more communication. Formula: https://www.ambeed.com/products/56296-18-5.html.
Chemistry is the experimental and theoretical study of materials on their properties at both the macroscopic and microscopic levels. 56296-18-5, Name is DREADD agonist 21, molecular formula is C17H18N4. In an article, author is Sun, Shi-Lei,once mentioned of 56296-18-5, Formula: https://www.ambeed.com/products/56296-18-5.html.
Variovorax is a metabolically diverse genus of plant growth-promoting rhizobacteria (PGPR) that engages in mutually beneficial interactions between plants and microbes. Unlike most PGPR, Variovorax cannot synthesize the phytohormone indole-3-acetic acid (IAA) via tryptophan. However, we found that Variovorax boronicumulans strain CGMCC 4969 can produce IAA using indole-3-acetonitrile (IAN) as the precursor. Thus, in the present study, the IAA synthesis mechanism of V. boronicumulans CGMCC 4969 was investigated. V. boronicumulans CGMCC 4969 metabolized IAN to IAA through both a nitrilase-dependent pathway and a nitrile hydratase (NHase) and amidase-dependent pathway. Cobalt enhanced the metabolic flux via the NHase/amidase, by which IAN was rapidly converted to indole-3-acetamide (IAM) and in turn to IAA. IAN stimulated metabolic flux via the nitrilase, by which IAN was rapidly converted to IAA. Subsequently, the IAA was degraded. V. boronicumulans CGMCC 4969 can use IAN as the sole carbon and nitrogen source for growth. Genome sequencing confirmed the IAA synthesis pathways. Gene cloning and overexpression in Escherichia coli indicated that NitA has nitrilase activity and lamA has amidase activity to respectively transform IAN and IAM to IAA. Interestingly, NitA showed a close genetic relationship with the nitrilase of the phytopathogen Pseudomonas syringae. Quantitative PCR analysis indicated that the NHase/amidase system is constitutively expressed, whereas the nitrilase is inducible. The present study helps our understanding of the versatile functions of Variovorax nitrile-converting enzymes that mediate IAA synthesis and the interactions between plants and these bacteria. IMPORTANCE We demonstrated that Variovorax boronicumulans CGMCC 4969 has two enzymatic systems-nitrilase and nitrile hydratase/amidase-that convert indole-3-acetonitrile (IAN) to the important plant hormone indole-3-acetic acid (IAA). The two IAA synthesis systems have very different regulatory mechanisms, affecting the IAA synthesis rate and duration. The nitrilase was induced by IAN, which was rapidly converted to IAA; subsequently, IAA was rapidly consumed for cell growth. The nitrile hydratase (NHase) and amidase system was constitutively expressed and slowly but continuously synthesized IAA. In addition to synthesizing IAA from IAN, CGMCC 4969 has a rapid IAA degradation system, which would be helpful for a host plant to eliminate redundant IAA. This study indicates that the plant growthpromoting rhizobacterium V. boronicumulans CGMCC 4969 has the potential to be used by host plants to regulate the IAA level.
Interested yet? Keep reading other articles of 56296-18-5, you can contact me at any time and look forward to more communication. Formula: https://www.ambeed.com/products/56296-18-5.html.
Reference:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
,Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles