On September 20, 2016, Fabry, David C.; Rueping, Magnus published an article.Electric Literature of 65417-22-3 The title of the article was Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants. And the article contained the following:
Visible light photoredox catalysis as a new alternative to conventionally applied regeneration/oxidation procedures was examined This account summarizes these recent advances in this expanding area and will highlight the new concept of merging distinct redox catalytic processes for C-H functionalizations through the application of visible light photoredox catalysis. Photoredox catalysis can be considered as catalytic electron-donating or -accepting processes, making use of visible-light absorbing homogeneous and heterogeneous metal-based catalysts, as well as organic dye sensitizers or polymers. As a consequence, photoredox catalysis is, in principle, an ideal tool for the recycling of any given metal catalyst via a coupled electron transfer (ET) process. Here we describe our first successful endeavors to address the above challenges by combining visible light photoredox catalysis with different ruthenium, rhodium, or palladium catalyzed C-H activations. Since only small amounts of the oxidant are generated and are immediately consumed in these transformations, side reactions of substrates or products can be avoided. Thus, usually oxidant-sensible substrates can be used, which makes these methods highly suitable for complex mol. structure syntheses. Moreover, mechanistic studies shed light on new reaction pathways, intermediates, and in situ generated species. The successful development of our dual catalysis concept, consisting of combined visible light photoredox catalysis and metal catalyzed C-H functionalization, provides many new opportunities for further explorations in the field of C-H functionalization. The experimental process involved the reaction of Methyl 2-methyl-1H-indole-3-carboxylate(cas: 65417-22-3).Electric Literature of 65417-22-3
The Article related to metal visible photocatalysis photoredox catalyst photocyclization olefination, Radiation Chemistry, Photochemistry, and Photographic and Other Reprographic Processes: Radiation Chemistry and Photochemistry and other aspects.Electric Literature of 65417-22-3
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles