Guo, Leilei team published research on International Biodeterioration & Biodegradation in 2021 | 771-51-7

Safety of 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Safety of 2-(1H-Indol-3-yl)acetonitrile.

Guo, Leilei;Yang, Wenlong;Cheng, Xi;Fan, Zhixia;Chen, Ximeng;Ge, Feng;Dai, Yijun research published 《 Degradation of neonicotinoid insecticide acetamiprid by two different nitrile hydratases of Pseudaminobacter salicylatoxidans CGMCC 1.17248》, the research content is summarized as follows. Acetamiprid is a neonicotinoid insecticide used worldwide that has caused environmental pollution and adverse effects on ecosystems. Here, a novel bacterium, Pseudaminobacter salicylatoxidans CGMCC 1.17248, was isolated to rapidly degrade acetamiprid to IM-1-2 via hydration. Gene cloning and overexpression demonstrated that two nitrile hydratases, AnhA and AnhB, converted acetamiprid to IM-1-2. Escherichia coli overexpressing AnhA and AnhB degraded 98.1% and 94.0% of acetamiprid (1.0 mmol L-1) in 5 min and 8 h, resp. The pure AnhA and AnhB had a Vmax value of 14.12 and 1.20 μmol mg-1 min-1, resp., and a Km value of 1.02 mmol L-1 and 2.95 mmol L-1, resp. Compared with AnhA, AnhB had broad pH stability, as well as metal ions and organic solvents tolerance. Expression of AnhA and AnhB was induced by decreasing the nutrient concentration of culture broth and addition of urea and therefore significantly enhanced acetamiprid degradation of CGMCC 1.17248. qPCR indicated that the expression of AnhA and AnhB under the cultured conditions of 1/15 lysogeny broth or 0.5% urea addition was improved by from 2.2 to 5.3 times. The results presented herein will facilitate development of bioremediation agents for acetamiprid pollution and understanding of the functional role of bacterial nitrile hydratase.

Safety of 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Guo, Lijian team published research on Plant Biotechnology Journal in 2022 | 771-51-7

HPLC of Formula: 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. HPLC of Formula: 771-51-7.

Guo, Lijian;Ma, Meng;Wu, Linnan;Zhou, Mengdie;Li, Mengyao;Wu, Baowei;Li, Long;Liu, Xiangli;Jing, Ruilian;Chen, Wei;Zhao, Huixian research published 《 Modified expression of TaCYP78A5 enhances grain weight with yield potential by accumulating auxin in wheat (Triticum aestivum L.)》, the research content is summarized as follows. Increasing grain yield has always been the primary goal of crop breeding. KLUH/CYP78A5 has been shown to affect seed size in several plant species, but the relevant mol. mechanism is still unclear and there are no reports of this gene contributing to yield. Here, we demonstrate that modified expression of TaCYP78A5 can enhance wheat grain weight and grain yield per plant by accumulating auxin. TaCYP78A5 is highly expressed in maternal tissues, including ovary and seed coat during wheat development. The constitutive overexpression of TaCYP78A5 leads to significantly increased seed size and weight but not grain yield per plant due to the strengthening of apical dominance. However, localized overexpression of TaCYP78A5 in maternal integument enhances grain weight and grain yield per plant by 4.3%-18.8% and 9.6%-14.7%, resp., in field trials. Transcriptome and hormone metabolome analyses reveal that TaCYP78A5 participates in auxin synthesis pathway and promotes auxin accumulation and cell wall remodelling in ovary. Phenotype investigation and cytol. observation show that localized overexpression of TaCYP78A5 in ovary results in delayed flowering and prolonged proliferation of maternal integument cells, which promote grain enlargement. Moreover, naturally occurring variations in the promoter of TaCYP78A5-2A contribute to thousand-grain weight (TGW) and grain yield per plant of wheat;TaCYP78A5-2A haplotype Ap-HapII with higher activity is favorable for improving grain weight and grain yield per plant and has been pos. selected in wheat breeding. Then, a functional marker of TaCYP78A5 haplotype Ap-HapII is developed for marker-assisted selection in wheat grain and yield improvement.

HPLC of Formula: 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Han, Yu team published research on Microbiome in 2021 | 771-51-7

Synthetic Route of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). Synthetic Route of 771-51-7.

Han, Yu;Jiao, Nianzhi;Zhang, Yao;Zhang, Fan;He, Chen;Liang, Xuejiao;Cai, Ruanhong;Shi, Quan;Tang, Kai research published 《 Opportunistic bacteria with reduced genomes are effective competitors for organic nitrogen compounds in coastal dinoflagellate blooms》, the research content is summarized as follows. Phytoplankton blooms are frequent events in coastal areas and increase the production of organic matter that initially shapes the growth of opportunistic heterotrophic bacteria. However, it is unclear how these opportunists are involved in the transformation of dissolved organic matter (DOM) when blooms occur and the subsequent impacts on biogeochem. cycles. We used a combination of genomic, proteomic, and metabolomic approaches to study bacterial diversity, genome traits, and metabolic responses to assess the source and lability of DOM in a spring coastal bloom of Akashiwo sanguinea. We identified mols. that significantly increased during bloom development, predominantly belonging to amino acids, dipeptides, lipids, nucleotides, and nucleosides. The opportunistic members of the bacterial genera Polaribacter, Lentibacter, and Litoricola represented a significant proportion of the free-living and particle-associated bacterial assemblages during the stationary phase of the bloom. Polaribacter marinivivus, Lentibacter algarum, and Litoricola marina were isolated and their genomes exhibited streamlining characterized by small genome size and low GC content and non-coding densities, as well as a smaller number of transporters and peptidases compared to closely related species. However, the core proteomes identified house-keeping functions, such as various substrate transporters, peptidases, motility, chemotaxis, and antioxidants, in response to bloom-derived DOM. We observed a unique metabolic signature for the three species in the utilization of multiple dissolved organic nitrogen compounds The metabolomic data showed that amino acids and dipeptides (such as isoleucine and proline) were preferentially taken up by P. marinivivus and L. algarum, whereas nucleotides and nucleosides (such as adenosine and purine) were preferentially selected by L. marina. The results suggest that the enriched DOM in stationary phase of phytoplankton bloom is a result of ammonium depletion. This environment drives genomic streamlining of opportunistic bacteria to exploit their preferred nitrogen-containing compounds and maintain nutrient cycling.

Synthetic Route of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dutta, Bidyutjyoti team published research on New Journal of Chemistry in 2021 | 771-51-7

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile.

Dutta, Bidyutjyoti;Garg, Anirban;Phukan, Parmita;Kulshrestha, Akshay;Kumar, Arvind;Sarma, Diganta research published 《 Designing a new basic ionic liquid [DHIM][OH] as a task specific bifunctional catalyst for facile microwave assisted metal free synthesis of 5-amino-1,2,3-triazoles》, the research content is summarized as follows. A green protocol for the synthesis of a series of 5-amino-1,2,3-triazoles from benzyl cyanide and Ph azide derivatives catalyzed by the novel bifunctional ionic liquid [DHIM][OH] under microwave irradiation has been developed. The bifunctional ionic liquid which acts as a catalyst can be accessed through rapid preparation via incorporation of microwave irradiation To the best of our knowledge, the present approach is the first method to employ an organocatalyst under microwave irradiation to access rapid assembly of 5-amino-1,2,3-triazoles under mild conditions. Furthermore, small E-factor values associated with the products confirm greener attributes of the current protocol.

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dziewit, Kacper team published research on BMC Plant Biology in 2021 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., HPLC of Formula: 771-51-7

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. HPLC of Formula: 771-51-7.

Dziewit, Kacper;Pencik, Ales;Dobrzynska, Katarzyna;Novak, Ondrej;Szal, Bozena;Podgorska, Anna research published 《 Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress》, the research content is summarized as follows. The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., HPLC of Formula: 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Ciska, Ewa team published research on Food Chemistry in 2021 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Formula: C10H8N2

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Formula: C10H8N2.

Ciska, Ewa;Honke, Joanna;Drabinska, Natalia research published 《 Changes in glucosinolates and their breakdown products during the fermentation of cabbage and prolonged storage of sauerkraut: Focus on sauerkraut juice》, the research content is summarized as follows. Sauerkraut juice has not gained much scientific attention to date. Therefore, this study aimed to track changes in glucosinolates (GLS) during fermentation of white cabbage and the formation of corresponding breakdown products in sauerkraut and sauerkraut juice sep. and to evaluate their stability during prolonged storage of the final products. The results obtained indicate that both sauerkraut and sauerkraut juice are a good source of bioactive compounds: ascorbigen and isothiocyanates. The stability of individual compounds during storage varied, and the absolute content of phytochems. depended on the content of native GLS in the raw material and its bacterial composition The dominant compound was ascorbigen, stable in acidic pH in both sauerkraut and sauerkraut juice, even after prolonged storage. Sauerkraut juice was also found as a rich source of bioactive isothiocyanates. One 250 mL glass of sauerkraut juice (after two weeks) can deliver approx. 75μmol of bioactive ascorbien and isothiocyanates, hence it can be considered as functional food, delivering beneficial health effects.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Formula: C10H8N2

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Cundy, Nicholas J. team published research on RSC Chemical Biology in 2021 | 771-51-7

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile.

Cundy, Nicholas J.;Hare, Roseanna K.;Tang, Tina;Leach, Andrew G.;Jowitt, Thomas A.;Qureshi, Omar;Gordon, John;Barnes, Nicholas M.;Brady, Catherine A.;Raven, Emma L.;Grainger, Richard S.;Butterworth, Sam research published 《 Design, synthesis and evaluation of tryptophan analogues as tool compounds to study IDO1 activity》, the research content is summarized as follows. The metabolism of L-tryptophan to N-formyl-L-kynurenine by indoleamine-2,3-dioxygenase 1 (IDO1) is thought to play a critical role in tumor-mediated immune suppression. While there has been significant progress in elucidating the overall enzymic mechanism of IDO1 and related enzymes, key aspects of the catalytic cycle remain poorly understood. Here we report the design, synthesis and biol. evaluation of a series of tryptophan analogs which have the potential to intercept putative intermediates in the metabolism of 1 by IDO1. Functionally-relevant binding to IDO1 was demonstrated through enzymic inhibition, however no IDO1-mediated metabolism of these compounds was observed Subsequent Tm-shift anal. shows the most active compound, 17, exhibits a distinct profile from known competitive IDO1 inhibitors, with docking studies supporting the hypothesis that 17 may bind at the recently-discovered Si site. These findings provide a start-point for development of further mechanistic probes and more potent tryptophan-based IDO1 inhibitors.

Recommanded Product: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Dani, Kaidala Ganesha Srikanta team published research on New Phytologist in 2022 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Electric Literature of 771-51-7

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. Electric Literature of 771-51-7.

Dani, Kaidala Ganesha Srikanta;Loreto, Francesco research published 《 Plant volatiles as regulators of hormone homeostasis》, the research content is summarized as follows. A review. Some canonical plant hormones such as auxins and gibberellins have precursors that are biogenic volatiles (indole, indole acetonitrile, phenylacetaldoxime and ent-kaurene). Cytokinins, abscisic acid and strigolactones are hormones comprising chem. moieties that have distinct volatile analogs, and are synthesized alongside constitutively emitted volatiles (isoprene, sesquiterpenes, lactones, benzenoids and apocarotenoid volatiles). Nonvolatile hormone analogs and biogenic volatile organic compounds (BVOCs) evolved in tandem as growth and behavioral regulators in unicellular organisms. In plants, however, nonvolatile hormones evolved as regulators of growth, development and differentiation, while endogenous BVOCs (often synthesized lifelong) became subtle regulators of hormone synthesis, availability, activity and turnover, all supported by functionally redundant components of hormone metabolism Reciprocal changes in the abundance and activity of hormones, nitric oxide, and constitutive plant volatiles constantly bridge retrograde and anterograde signalling to maintain hormone equilibrium even in unstressed plants. This is distinct from transient interference in hormone signalling by stress-induced and exogenously received volatiles.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., Electric Literature of 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Deng, Hao team published research on Food Chemistry: Molecular Sciences in 2021 | 771-51-7

Quality Control of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. Quality Control of 771-51-7.

Deng, Hao;Yin, Qingchun;Lin, Yuqin;Feng, Jiancheng;Chen, Zhe;Zhang, Ronghu research published 《 Analysis on quality differences associated with metabolomics of rambutan during different temperature storage》, the research content is summarized as follows. This study aimed to understand how temperatures differentially impact the crucial quality indexes and metabolites in rambutan during storage. Rambutan browned quickly at room temperature from 0 d (control). After ten days at 5°C, browning index and lightness were 4.2% and 147.5%, compared with rambutan stored at 1°C, which was the best quality achieved. An UPLC-MS/MS was performed to uncover the metabolism underlying those quality differences, followed by the anal. of KEGG pathways. Results showed that 276 differentially expressed metabolites (DEMs) screened were enriched in 18 KEGG pathways. The pathways related to carbohydrates, aliphatic metabolites, and organic acids were highly active in rambutan stored at room temperature, whereas the pathways related to amino acids biosynthesis and nucleotides were highly active in rambutan stored at 1°C, 5°C. These findings indicated that increased scopoline was associated with serious browning at room temperature L-leucine and L-isoleucine both increased in response to low temperature and reduced browning. Glutathione and ascorbate decreased to 4.89% and 4.36%, compared with 0 d (CK) in rambutan with severe browning stored at 1°C for ten days. However, no significant changes in those two metabolites were observed in rambutan stored at optimal 5°C for ten days. Thus glutathione and ascorbate could be used as potential indicators of browning degree. Our study provided a metabolic insight into the role of temperature on rambutan quality and browning.

Quality Control of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles

Ding, Chaohui team published research on Plant Journal in 2021 | 771-51-7

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., SDS of cas: 771-51-7

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. SDS of cas: 771-51-7.

Ding, Chaohui;Lin, Xianhui;Zuo, Ying;Yu, Zhilin;Baerson, Scott R.;Pan, Zhiqiang;Zeng, Rensen;Song, Yuanyuan research published 《 Transcription factor OsbZIP49 controls tiller angle and plant architecture through the induction of indole-3-acetic acid-amido synthetases in rice》, the research content is summarized as follows. Tiller angle is an important determinant of plant architecture in rice (Oryza sativa L.). Auxins play a critical role in determining plant architecture; however, the underlying metabolic and signaling mechanisms are still largely unknown. In this study, we have identified a member of the bZIP family of TGA class transcription factors, OsbZIP49, that participates in the regulation of plant architecture and is specifically expressed in gravity-sensing tissues, including the shoot base, nodes and lamina joints. Transgenic rice plants overexpressing OsbZIP49 displayed a tiller-spreading phenotype with reduced plant height and internode lengths. In contrast, CRISPR/Cas9-mediated knockout of OsbZIP49 resulted in a compact architecture. Follow-up studies indicated that the effects of OsbZIP49 on tiller angles are mediated through changes in shoot gravitropic responses. Addnl., we provide evidence that OsbZIP49 activates the expression of indole-3-acetic acid-amido synthetases OsGH3-2 and OsGH3-13 by directly binding to TGACG motifs located within the promoters of both genes. Increased GH3-catalyzed conjugation of indole-3-acetic acid (IAA) in rice transformants overexpressing OsbZIP49 resulted in the increased accumulation of IAA-Asp and IAA-Glu, and a reduction in local free auxin, tryptamine and IAA-Glc levels. Exogenous IAA or naphthylacetic acid (NAA) partially restored shoot gravitropic responses in OsbZIP49-overexpressing plants. Knockout of OsbZIP49 led to reduced expression of both OsGH3-2 and OsGH3-13 within the shoot base, and increased accumulation of IAA and increased OsIAA20 expression levels were observed in transformants following gravistimulation. Taken together, the present results reveal the role transcription factor OsbZIP49 plays in determining plant architecture, primarily due to its influence on local auxin homeostasis.

771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., SDS of cas: 771-51-7

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles