With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.80360-20-9,1-(Phenylsulfonyl)-1H-indole-3-carbaldehyde,as a common compound, the synthetic route is as follows.
A solution of chlorotitanium (IV) triethoxide (22.5 g, 103 mmol, 1.05 equiv, Holoway, H. Chem. Ind. 1962, 3, 214) in dichloromethane (69 mL) was added via cannula to a solution of ethyl 2-((S,2S,5S)-2-hydroxypinan-3-imino)glybioncin C (E2-11, 24.8 g, 97.8 mmol, 1 equiv, (a) Oguri, T.; Kaway, N.; Yamada, S. Chem. Pharm. Bull. 1978, 26, 803. (b) Solladi-Cavallo, A.; Simon, M. C. Tetrahedron Lett. 1989, 30, 6011. (c) Solladi-Cavallo, A.; Simon-Wermeister, M. C.; Schwarz, J. Organometallics 1993, 12, 3743) in dichloromethane (300 mL) at 0 C. A fine powder of 1-(phenylsulfonyl)-1H-indole-3-carbaldehyde (E2-10, 29.3 g, 103 mmol, 1.05 equiv, Wenkert, E.; Moeller, P. D. R.; Piettre, S. R. J. Am. Chem. Soc. 1988, 110, 7188) was then added as a solid to the reaction mixture. Triethylamine (27.3 mL, 196 mmol, 2.00 equiv) was subsequently added dropwise via syringe and the reaction mixture was stirred at 0 C. After 21 h, brine (1 L) at 0 C. was added to the reaction mixture and the resulting bilayer suspension was filtered through Celite. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (2¡Á300 mL). The combined organic layers were dried over anhydrous sodium sulfate, were filtered, and were concentrated under reduced pressure. The resulting orange foam was purified by flash column chromatography on silica gel (eluent: gradient, 30?50% ethyl acetate in hexanes) to provide an inseparable mixture of diastereomeric aldol products (42.5 g, 80.6%) as a yellow foam. In some embodiments, the aldol products were highly prone to degradation through a retro-aldol pathway; thus, the mixture of diastereomers was quickly isolated and immediately used in the subsequent reaction. Structural assignments were made using additional information from gCOSY, HSQC, and gHMBC experiments. (1135) 1H NMR (600 MHz, CDCl3, 20 C.; only the peaks corresponding to the major diastereomer are tabulated): delta 7.96 (d, J=8.3, 1H, C8H), 7.86 (d, J=8.6, 2H, SO2Ph-o-H), 7.71 (s, 1H, C2H), 7.67 (d, J=7.8, 1H, C8H), 7.49 (t, J=7.6, 1H, SO2Ph-p-H), 7.39 (app-t, J=8.1, 2H, SO2Ph-m-H), 7.29 (app-t, J=7.3, 1H, C7H), 7.23 (app-t, J=7.2, 1H, C6H), 5.49 (d, J=6.9, 1H, C12H), 4.46 (d, J=6.9, 1H, C11H), 4.11-3.99 (m, 2H, CO2CH2CH3), 3.90 (br-s, 1H, C12OH), 2.42 (dd, J=2.0, 17.7, 1H, C16Ha), 2.19 (dd, J=2.7, 18.0, 1H, C16Hb), 2.11-2.05 (m, 1H, C18Ha), 2.00 (br-s, 1H, C20OH), 1.89 (app-t, J=5.8, 1H, C19H), 1.87-1.83 (m, 1H, C17H), 1.42 (s, 3H, C24H), 1.23 (s, 3H, C22/23H), 1.06 (app-t, J=7.4, 3H, CO2CH2CH3), 1.02 (d, J=4.7, 1H, C18Hb), 0.80 (s, 3H, C22/23H). 13C NMR (150 MHz, CDCl3, 20 C.): delta 180.6 (C15), 169.5 (C13), 138.0 (SO2Ph-ipso-C), 134.5 (C9), 133.6 (SO2Ph-p-C), 129.9 (C4), 129.2 (SO2Ph-m-C), 126.7 (SO2Ph-o-C), 124.9 (C7), 124.7 (C2), 123.1 (C6), 122.3 (C3), 120.2 (C5), 113.5 (C8), 76.8 (C20), 67.7 (C12), 67.4 (C11), 61.1 (CO2CH2CH3), 50.3 (C19), 38.5 (C21), 38.2 (C17), 33.8 (C16), 28.1 (C24), 27.8 (C18), 27.1 (C22/23), 22.6 (C22/23), 13.7 (CO2CH2CH3). FTIR (thin film) cm-1: 3422 (br-m), 2926 (s), 1734 (s), 1649 (m), 1557 (w), 1448 (s), 1373 (s), 1273 (m), 1181 (s), 1126 (m), 1089 (m), 1022 (w), 978 (w), 920 (w), 751 (m). HRMS (ESI) (m/z): calc’d for C29H35N2O6S [M+H]+: 539.2210. found: 539.2198. TLC (50% ethyl acetate in hexanes), Rf: 0.49 (UV, CAM, KMnO4).
80360-20-9, As the paragraph descriping shows that 80360-20-9 is playing an increasingly important role.
Reference£º
Patent; Massachusetts Institute of Technology; The Board of Trustees of the University of Illinois; Movassaghi, Mohammad; Kim, Justin; Hergenrother, Paul J.; Morrison, Karen; Boyer, Nicolas; (186 pag.)US9353150; (2016); B2;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles