Database of free solution mobilities for 276 metabolites was written by Petrov, Alexander P.;Sherman, Lindy M.;Camden, Jon P.;Dovichi, Norman J.. And the article was included in Talanta in 2020.Synthetic Route of C10H10N2O This article mentions the following:
Although databases are available that provide mass spectra and chromatog. retention information for small-mol. metabolites, no publicly available database provides electrophoretic mobility for common metabolites. As a result, most compounds found in electrophoretic-based metabolic studies are unidentified and simply annotated as “features”. To begin to address this issue, the authors analyzed 460 metabolites from a com. library using capillary zone electrophoresis coupled with electrospray mass spectrometry. To speed anal., a sequential injection method was used wherein six compounds were analyzed per run. An uncoated fused silica capillary was used for the anal. at 20掳 with a 0.5% (volume/volume) formic acid and 5% (volume/volume) methanol background electrolyte. A Prince autosampler was used for sample injection and the capillary was coupled to an ion trap mass spectrometer using an electrokinetically-pumped nanospray interface. The authors generated mobility values for 276 metabolites from the library (60% success rate) with an average standard deviation of 0.01 脳 10-8 m2V-1s-1. As expected, cationic and anionic compounds were well resolved from neutral compounds Neutral compounds co-migrated with electroosmotic flow. Most of the compounds that were not detected were neutral and presumably suffered from adsorption to the capillary wall or poor ionization efficiency. In the experiment, the researchers used many compounds, for example, Indole-3-acetamide (cas: 879-37-8Synthetic Route of C10H10N2O).
Indole-3-acetamide (cas: 879-37-8) belongs to indole derivatives. In addition to tryptophan, indigo, and indoleacetic acid, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. In addition to indole, the strain-release chemistry worked for numerous substrates including amines, alcohols, thiols, carboxylic acids, imidazoles, and pyrazoles.Synthetic Route of C10H10N2O
Referemce:
Indole alkaloid derivatives as building blocks of natural products from聽Bacillus thuringiensis聽and聽Bacillus velezensis聽and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles