Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. These enzymes oxidize the ring so the substrate turns into Indigo. SDS of cas: 35737-15-6.
Chen, Hao;Mao, Runyu;Brzozowski, Martin;Nguyen, Nghi H.;Sleebs, Brad E. research published 《 Late stage phosphotyrosine mimetic functionalization of peptides employing metallaphotoredox catalysis》, the research content is summarized as follows. Access to phosphotyrosine (pTyr) mimetics requires multistep syntheses, and therefore late stage incorporation of these mimetics into peptides is not feasible. Here, we develop and employ metallaphotoredox catalysis using 4-halogenated phenylalanine to afford a variety of protected pTyr mimetics in one step. This methodol. was shown to be tolerant of common protecting groups and applicable to the late stage pTyr mimetic modification of protected and unprotected peptides, and peptides of biol. relevance.
SDS of cas: 35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., 35737-15-6.
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles