Heterocyclic compounds can be divided into two categories: alicyclic heterocycles and aromatic heterocycles. Compounds whose heterocycles in the molecular skeleton cannot reflect aromaticity are called alicyclic heterocyclic compounds. Compound: 1008-89-5, is researched, Molecular C11H9N, about Visible-light- and bromide-mediated photoredox Minisci alkylation of N-heteroarenes with ester acetates, the main research direction is ethyl heteroarene preparation; heteroarene ethyl acetate photoredox Minisci alkylation photocatalyst.Computed Properties of C11H9N.
A visible-light-induced photoredox Minisci alkylation reaction of N-heteroarenes such as 7-chloro-2-methylquinoline with Et acetate has been reported. Et acetate was used for the first time as an alkylation reagent with reduced toxicity. Hence, 4-quinazolinones I [R = H, Cl, Et, (2-methoxyethyl)oxidanyl; R1 = H, F, Cl, Br, (2-methoxyethyl)oxidanyl], quinolines such as 7-chloro-2-methylquinoline, and pyridines such as 4-phenylpyridine and 2-phenylpyridine reacted smoothly in the current reaction system. Mechanistic studies indicate that LiBr plays a key role to dramatically improve the efficiency of the reaction by the mediation of hydrogen atom transfer.
There is still a lot of research devoted to this compound(SMILES:C1(C2=CC=CC=C2)=NC=CC=C1)Computed Properties of C11H9N, and with the development of science, more effects of this compound(1008-89-5) can be discovered.
Reference:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles