Gabrielli, V. team published research on Materials Today Chemistry in 2022 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Computed Properties of 35737-15-6

In addition to indoleacetic acid, indigo, and tryptophan, numerous compounds obtainable from plant or animal sources contain the indole molecular structure. 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. The best-known group of these compounds is the indole alkaloids, members of which have been isolated from plants representing more than 30 families. Computed Properties of 35737-15-6.

Gabrielli, V.;Missale, E.;Cattelan, M.;Pantano, M. F.;Frasconi, M. research published 《 Supramolecular modulation of the mechanical properties of amino acid-functionalized cellulose nanocrystal films》, the research content is summarized as follows. Cellulose nanocrystal (CNC) is a promising building block for the bottom-up assembly of novel lightweight renewable materials. The ability to engineer the interfacial properties of CNC is of paramount importance to develop assembled materials for various applications; yet it remains a challenge to manipulate the supramol. interactions within the cellulosic nanomaterials in a controlled manner. In this context, we demonstrate in this article how the assembly and mech. properties of cellulose thin films can be controlled by manipulating the interfacial interactions of TEMPO-oxidized cellulose nanocrystals (TOCNCs) grafted with two different amino acids, arginine and tryptophan. The amino acid grafting onto the cellulose scaffold was confirmed in aqueous solutions by 1H NMR spectroscopy and in solid form by FTIR and XPS techniques. The surface functionalization of TOCNCs with simple cationic and aromatic groups provides a strategy for tuning the assembly of the nanostructures based on different supramol. crosslinking interactions, including hydrogen bonds, π-π stacking, and cation-π interactions. In particular, we show that nanocellulose chains crosslinked by the non-covalent cation-π interactions lead to the formation of a laminated superstructure with high deformation and load standing capabilities. Our work provides a versatile strategy for tuning the surface properties of nanocellulose and represents an important step toward the development of sustainable materials with tailored mech. properties, which will enable a wider application range of this building block all the way from tissue-engineering scaffolds to flexible devices.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., Computed Properties of 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles