Jana, Manas’s team published research in Journal of Colloid and Interface Science in 2017 | CAS: 99409-32-2

Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranoside(cas: 99409-32-2) belongs to indole.The indole subunit is an almost ubiquitous component of biologically active natural products, and its study has been the focus of research for decades.Name: Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranosideThey are capable of binding to a variety of receptors with high affinity and thus have applications in a wide range of therapeutic areas. Due to this activity, the indole ring system has become an important component or intermediate in the synthesis of heterocycles.

Jana, Manas; Ghosh, Anirban; Santra, Abhishek; Kar, Rajiv Kumar; Misra, Anup Kumar; Bhunia, Anirban published an article in Journal of Colloid and Interface Science. The title of the article was 《Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited》.Name: Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranoside The author mentioned the following in the article:

The interaction of lysozyme with the N-acetylmuramic acid (NAM) and N-acetylglucosamine (NAG) unit of peptidoglycan (PGN) polymer of the bacterial cell wall is of immense importance to understand the mechanism of lysozyme on PGN. The synthesis of three novel NAM derivatives containing fused oxazinone ring to the NAM moiety has been achieved. The synthesized compounds were evaluated for their potential as a glycomimetic acceptor of lysozyme using different biophys. and computational methods such as 1H NMR, STD NMR, DOSY and Mol. docking. Novel modified muramic acid derivatives have been synthesized in excellent yield containing fused cyclooxazine ring embedded on the muramic acid moiety using a newly developed hydrazinolysis reaction condition. From various biophys. studies, it has been established that the compound containing endo modified muramic acid moiety (compound 1) shows significant binding property for the lysozyme while the other isomer (compound 2) did not bind to the lysozyme. The catalytic residues Glu35 and Asp52 were found to be in the close proximity for the active mol. which justifies the selectivity of this mol. in conjunction to lysozyme enzymic activity. In the part of experimental materials, we found many familiar compounds, such as Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranoside(cas: 99409-32-2Name: Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranoside)

Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranoside(cas: 99409-32-2) belongs to indole.The indole subunit is an almost ubiquitous component of biologically active natural products, and its study has been the focus of research for decades.Name: Ethyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-thioglucopyranosideThey are capable of binding to a variety of receptors with high affinity and thus have applications in a wide range of therapeutic areas. Due to this activity, the indole ring system has become an important component or intermediate in the synthesis of heterocycles.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles