Kim, Dong-in team published research on Chemical Communications (Cambridge, United Kingdom) in 2022 | 35737-15-6

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Indole, first isolated in 1866, has the molecular formula C8H7N, and it is commonly synthesized from phenylhydrazine and pyruvic acid, 35737-15-6, formula is C26H22N2O4, Name is Fmoc-Trp-OH. although several other procedures have been discovered.Indole is a colourless solid having a pleasant fragrance in highly dilute solutions. It melts at 52.5° C (126.5° F). SDS of cas: 35737-15-6.

Kim, Dong-in;Han, Seong-jae;Lim, Yong-beom research published 《 Unique behavior of the α-helix in bending deformation》, the research content is summarized as follows. The maximum degree of bending that can be tolerated by the rigid rod-like α-helix remains unknown; however, it should be very difficult or even impossible to make α-helixes with varying degrees of curvature in folded proteins. As an exptl. tractable model, here we utilize cyclic proteins and peptides to determine the maximum possible bending in the α-helix. We artificially enforced bending in the α-helixes by using variously sized macrocycles and compared the structural characteristics of the macrocycles with those of their linear counterparts. This differential anal. reveals that the radius of curvature (RC) for the maximally bent α-helix is approx. 10 times smaller than those of typical α-helixes found in natural proteins. Together with the novel finding of the limit of α-helix deformation, excessively bent α-helixes can be further utilized in designing de novo peptides and proteins with unique structures and peculiar functions.

35737-15-6, Nalpha-FMOC-L-Tryptophan,also known as Fmoc-Trp-OH, is a useful research compound. Its molecular formula is C26H22N2O4 and its molecular weight is 426.5 g/mol. The purity is usually 95%.
Nα-Fmoc-L-Tryptophan is an N-Fmoc protected form of L-Tryptophan (T947210). L-Tryptophan is an essential amino acid that is important for cell proliferation and the biosynthesis of proteins. It is a precursor to Serotonin (HCl: S274980), a neurotransmitter that compound that aids in sleep and mental state. L-Tryptophan is also thought to cause eosinophilia-myalgia syndrome.
Fmoc-Trp-OH is an amino acid derivative
Fmoc-L-Trp-OH is an amide that contains a low bioavailability and inhibits the transfer of amino acids to ribosomes. It has been shown to inhibit the growth of cancer cells in cell culture and to have antimicrobial activity. Fmoc-L-Trp-OH is synthesized by reacting Naphthalene with glycine, followed by hydrolysis of the ester group under trifluoroacetic acid. The product is then conjugated with a polypeptide. This method of synthesis was developed as a way to produce peptides that are difficult to synthesize using solid-phase chemistry., SDS of cas: 35737-15-6

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles