Lazo, John S. published the artcileNovel benzofuran inhibitors of human mitogen-activated protein kinase phosphatase-1, Recommanded Product: Ethyl 6-cyano-1H-indole-2-carboxylate, the main research area is benzofuran preparation mitogen activated protein kinase phosphatase inhibition SAR.
Protein tyrosine phosphatases have a central role in the maintenance of normal cellular functionality. For example, PTP1B has been implicated in insulin-resistance, obesity, and neoplasia. Mitogen-activated protein kinase phosphatase-1 (MKP-1 or DUSP1) dephosphorylates and inactivates mitogen-activated protein kinase (MAPK) substrates, such as p38, JNK, and Erk, and has been implicated in neoplasia. The lack of readily available selective small mol. inhibitors of MKP family members has severely limited interrogation of their biol. role. Inspired by a previously identified inhibitor, NSC 357756 (I) of MKP-3, we synthesized seven NSC 357756 congeners, which were evaluated for in vitro inhibition against several protein phosphatases. Remarkably, none displayed potent inhibition against MKP-3, including the desamino NSC 357756 analog NU-154. Interestingly, NU-154 inhibited human PTP1B in vitro with an IC50 value of 24 ± 1 μM and showed little inhibition against Cdc25B, MKP-1, and VHR phosphatases. NU-126 [2-((E)-2-(5-cyanobenzofuran-2-yl)vinyl)-1H-indole-6-carbonitrile] inhibited MKP-1 and VHR in vitro but was less active against human MKP-3, Cdc25B, and PTP1B. The inhibition of MKP-1 by NU-126 was independent of redox processes. The benzofuran substructure represents a new potential scaffold for further analog development and provides encouragement that more selective and potent inhibitors of MKP family members may be achievable.
Bioorganic & Medicinal Chemistry published new progress about Enzyme functional sites, active. 104291-81-8 belongs to class indole-building-block, name is Ethyl 6-cyano-1H-indole-2-carboxylate, and the molecular formula is C12H10N2O2, Recommanded Product: Ethyl 6-cyano-1H-indole-2-carboxylate.
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles