Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. It is used in perfumery and in making tryptophan, an essential amino acid, and indoleacetic acid (heteroauxin), a hormone that promotes the development of roots in plant cuttings. COA of Formula: C10H8N2.
Marquis, Valentin;Smirnova, Ekaterina;Graindorge, Stefanie;Delcros, Pauline;Villette, Claire;Zumsteg, Julie;Heintz, Dimitri;Heitz, Thierry research published 《 Broad-spectrum stress tolerance conferred by suppressing jasmonate signaling attenuation in Arabidopsis JASMONIC ACID OXIDASE mutants》, the research content is summarized as follows. Jasmonate signaling for adaptative or developmental responses generally relies on an increased synthesis of the bioactive hormone jasmonoyl-isoleucine (JA-Ile), triggered by environmental or internal cues. JA-Ile is embedded in a complex metabolic network whose upstream and downstream components strongly contribute to hormone homeostasis and activity. We previously showed that JAO2, an isoform of four Arabidopsis JASMONIC ACID OXIDASES, diverts the precursor jasmonic acid (JA) to its hydroxylated form HO-JA to attenuate JA-Ile formation and signaling. Consequently, JAO2-deficient lines have elevated defenses and display improved tolerance to biotic stress. Here we further explored the organization and regulatory functions of the JAO pathway. Suppression of JAO2 enhances the basal expression of nearly 400 JA-regulated genes in unstimulated leaves, many of which being related to biotic and abiotic stress responses. Consistently, non-targeted metabolomic anal. revealed the constitutive accumulation of several classes of defensive compounds in jao2-1 mutant, including indole glucosinolates and breakdown products. The most differential compounds were agmatine phenolamides, but their genetic suppression did not alleviate the strong resistance of jao2-1 to Botrytis infection. Furthermore, jao2 alleles and a triple jao mutant exhibit elevated survival capacity upon severe drought stress. This latter phenotype occurs without recruiting stronger abscisic acid responses, but relies on enhanced JA-Ile signaling directing a distinct survival pathway with MYB47 transcription factor as a candidate mediator. Our findings reveal the selected spectrum of JA responses controlled by the JAO2 regulatory node and highlight the potential of modulating basal JA turnover to pre-activate mild transcriptional programs for multiple stress resilience.
COA of Formula: C10H8N2, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles