Application of 399-52-0In 2021 ,《Protein-observed 19F NMR of LecA from Pseudomonas aeruginosa》 appeared in Glycobiology. The author of the article were Shanina, Elena; Siebs, Eike; Zhang, Hengxi; Silva, Daniel Varon; Joachim, Ines; Titz, Alexander; Rademacher, Christoph. The article conveys some information:
The carbohydrate-binding protein LecA (PA-IL) from Pseudomonas aeruginosa plays an important role in the formation of biofilms in chronic infections. Development of inhibitors to disrupt LecA-mediated biofilms is desired but it is limited to carbohydrate-based ligands. Moreover, discovery of drug-like ligands for LecA is challenging because of its weak affinities. Therefore, we established a protein-observed 19F (PrOF) NMR (NMR) to probe ligand binding to LecA. LecA was labeled with 5-fluoroindole to incorporate 5-fluorotryptophanes and the resonances were assigned by site-directed mutagenesis. This incorporation did not disrupt LecA preference for natural ligands, Ca2+ and D-galactose (D-Gal). Following NMR perturbation of W42, which is located in the carbohydrate-binding region of LecA, allowed to monitor binding of low-affinity ligands such as N-acetyl D-galactosamine (D-GalNAc, Kd = 780 ± 97 μM). Moreover, PrOF NMR titration with glycomimetic of LecA p-nitrophenyl β-D-galactoside (pNPGal, Kd = 54 ± 6 μM) demonstrated a 6-fold improved binding of D-Gal proving this approach to be valuable for ligand design in future drug discovery campaigns that aim to generate inhibitors of LecA.5-Fluoro-1H-indole(cas: 399-52-0Application of 399-52-0) was used in this study.
5-Fluoro-1H-indole(cas: 399-52-0) is a member of aromaticfluorinated building blocks. Depending on which substituents are present, fluoroaromatic intermediates can be converted into fluorinated or fluorine-free commercial end products.Fluorine-containing aromatics have been incorporated into drugs (hypnotics, tranquilizers, antiinflammatory agents, analgesics, antibacterials).Application of 399-52-0
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles