With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.125872-95-9,6-Bromo-1-methyl-1H-indole,as a common compound, the synthetic route is as follows.
Preparation of 2-(6-bromo-1-methyl-1H-indol-3-yl)ethanol To a solution of 6-bromo-1-methyl-1/1-indole (18.0 g, 85.6 mmol) in diethyl ether (180 mL) at 0 C., was added oxalyl chloride (13.1 g, 103 mmol) dropwise under a nitrogen atmosphere. The resulting mixture was allowed to warn to room temperature and stirred for 1 h. After this time, methanol (15 mL) was added and the reaction stirred at room temperature further for 24 h. After this time, the reaction was filtered and the filter cake washed with water (20 mL), then cold diethyl ether (20 mL). The filter cake was dissolved in methylene chloride (100 mL) and dried over sodium sulfate. The drying agent was removed by filtration and the filtrate concentrated under reduced pressure to afford methyl 2-(6-bromo-1-methyl-1H-indol-3-yl)-2-oxoacetate which was used in the next step without purification. A suspension of methyl 2-(6-bromo-1-methyl-1H-indol-3-yl)-2-oxoacetate (18.0 g, 60.8 mmol) in tetrahydrofuran (200 mL) was treated with 2 M borane dimethylsulfide complex in tetrahydrofuran (121 mL) and stirred at reflux for 5 h. After this time, the reaction was cooled to room temperature, diluted with water (50 mL) and saturated aqueous sodium bicarbonate (100 mL) and extracted with diethyl ether (3*250 mL). The combined organic layers were washed sequentially with water and brine, dried over sodium sulfate, filtered and the filtrate concentrated under reduced pressure to afford 2-(6-bromo-1-methyl-1H-indol-3-yl)ethanol as a white solid: 1H NMR (400 MHz, CDCl3) d 7.46 (d, J=8.4 Hz, 1H), 7.46 (d, J=1.6 Hz, 2H), 7.22 (dd, J=8.4, 1.6 Hz, 1H), 6.92 (s, 1H), 3.88 (t, J=6.4 Hz, 2H), 3.73 (s, 3H), 2.99 (t, J=6.4 Hz, 3H).
125872-95-9, 125872-95-9 6-Bromo-1-methyl-1H-indole 15546854, aindole-building-block compound, is more and more widely used in various fields.
Reference£º
Patent; Gilead Connecticut, Inc.; Blomgren, Peter A.; Currie, Kevin S.; Kropf, Jeffrey E.; Lee, Seung H.; Mitchell, Scott A.; Schmitt, Aaron C.; Xu, Jianjun; Zhao, Zhongdong; US2014/148430; (2014); A1;,
Indole alkaloid derivatives as building blocks of natural products from?Bacillus thuringiensis?and?Bacillus velezensis?and their antibacterial and antifungal activity study
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles