Chemistry is the experimental and theoretical study of materials on their properties at both the macroscopic and microscopic levels.In a patent, Recommanded Product: 1-Methyl-1H-indole-2-carboxylic acid, Which mentioned a new discovery about 16136-58-6
The standard molar enthalpy of formation, in the gaseous phase, at T = 298.15 K, was calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding -(222.2 ± 3.5) kJ·mol-1 and -(234.1 ± 2.1) kJ·mol-1 for indole-3-carboxylic acid and 1-methylindole-3-carboxylic acid, respectively. Computational studies, at the G3(MP2) composite level, were conducted for indole-3-carboxylic acid and 1-methylindole-3-carboxylic acid as a complement of the experimental work, and they were also extended to the remaining isomers, indole-2-carboxylic acid, 1-methylindole-2-carboxylic acid, 3-methylindole-2-carboxylic acid, and 2-methylindole-3-carboxylic acid, to provide reliable estimates of the corresponding thermochemical parameters. The agreement of the estimates of the standard gas-phase enthalpy of formation so obtained, indole-2-carboxylic acid -(223.6 ± 0.8) kJ·mol-1, 1-methylindole-2-carboxylic acid -(223.7 ± 0.8) kJ·mol-1, 3-methylindole-2-carboxylic acid -(251.6 ± 1.0) kJ·mol-1, indole-3-carboxylic acid -(227.1 ± 1.1) kJ·mol-1, 1-methylindole-3-carboxylic acid -(238.0 ± 1.0) kJ·mol-1, and 2-methylindole-3-carboxylic acid -(267.2 ± 1.0) kJ·mol-1, with the available experimental data gives us additional confidence for the situations not studied experimentally. The enthalpic effect resulting from the entrance of the carboxyl group into the indole ring was discussed, and an enthalpic stabilization was found for indole and pyrrole derivatives when compared with other similar systems.
I hope this article can help some friends in scientific research. I am very proud of our efforts over the past few months and hope to 16136-58-6, help many people in the next few years.Recommanded Product: 16136-58-6
Reference:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles