Vinterhalter, D. team published research on Plant Growth Regulation in 2020 | 771-51-7

Name: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. Name: 2-(1H-Indol-3-yl)acetonitrile.

Vinterhalter, D.;Savic, J.;Stanisic, M.;Vinterhalter, B.;Dobrev, P. I.;Motyka, V. research published 《 Diurnal rhythmicity of endogenous phytohormones and phototropic bending capacity in potato (Solanum tuberosum L.) shoot cultures》, the research content is summarized as follows. Taking advantage of advanced high performance liquid chromatog.-electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS), we screened daily changes in concentrations of endogenous phytohormones of in vitro grown potato (Solanum tuberosum L. cv. Desiree) shoot cultures and checked for possible connections between the rhythmicity of endogenous phytohormones and phototropic bending capacity of the same cultures. Studies done under diurnal 16 h light and 8 h darkness (diurnal) and continuous light (CL) conditions showed prominent daily rhythmicity of endogenous phytohormone levels in both light regimes. Phototropic bending in potato is known to be rhythmic only in the diurnal, whereas in CL conditions the bending response is present but without any daily rhythmicity. For all of the studied phytohormone groups significant differences between the diurnal and CL conditions were found. Changes in the concentration of indole auxins, indole-3-acetic acid (IAA) and its catabolite 2-oxindole-3-acetic acid (OxIAA), were the most prominent. Their levels clearly alternated with level of IAA being high in diurnal and OxIAA in CL conditions. Significant concentration changes were also observed for other phytohormones such as cytokinin ribosides, salicylic acid, abscisic acid and phaseic acid. Observed changes in daily phytohormone levels indicate strong and complex involvement of diverse phytohormone groups in realization of the phototropic bending response of potato shoots.

Name: 2-(1H-Indol-3-yl)acetonitrile, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.

Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles