Design, synthesis and biological evaluation of novel hybrids targeting mTOR and HDACs for potential treatment of hepatocellular carcinoma was written by Zhai, Shiyang;Zhang, Huimin;Chen, Rui;Wu, Jiangxia;Ai, Daiqiao;Tao, Shunming;Cai, Yike;Zhang, Ji-Quan;Wang, Ling. And the article was included in European Journal of Medicinal Chemistry in 2021.Related Products of 754214-56-7 This article mentions the following:
Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid mols. targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type mol. hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61μM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13μM and SAHA, IC50 = 2.26μM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by mol. docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC. In the experiment, the researchers used many compounds, for example, 7-Azaindole-5-boronic Acid Pinacol Ester (cas: 754214-56-7Related Products of 754214-56-7).
7-Azaindole-5-boronic Acid Pinacol Ester (cas: 754214-56-7) belongs to indole derivatives. Indole, also called Benzopyrrole, a heterocyclic organic compound occurring in some flower oils, such as jasmine and orange blossom, in coal tar, and in fecal matter.Indole was synthesized in moderate yield via an o-naphthoquinone catalyzed tandem cross-coupling of substituted aniline and benzylamine under aerobic oxidation conditions.Related Products of 754214-56-7
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles