Previous studies have identified that indole-oxidases are present in P. putida, whose major ligands are heterocyclic substrates and have an interesting affinity when the substrate is indole. 771-51-7, formula is C10H8N2, Name is 2-(1H-Indol-3-yl)acetonitrile. These enzymes oxidize the ring so the substrate turns into Indigo. Electric Literature of 771-51-7.
Zheng, Shaojun;Zhu, Rui;Tang, Bing;Chen, Lizhuang;Bai, Hongjin;Zhang, Jiwen research published 《 Synthesis and biological evaluations of a series of calycanthaceous analogues as antifungal agents》, the research content is summarized as follows. Starting from indole-3-acetonitrile, a total of 66 new calycanthaceous alkaloid analogs were synthesized in excellent yields. The prepared compounds were evaluated for their biol. activities against a broad range of plant pathogen fungi. The results of bioassays indicated that the majority of tested compounds displayed comparable or better in vitro bioactivities than the pos. control. Notably, Compound displayed a significant activities against B. cereus, Escherichia sp. and R. solanacearum, even better than the pos. control streptomycin and Penicillin, with the same MIC value of 15.63μg mL-1. Compound displayed a broad spectrum and remarkably activities among the tested calycanthaceous analogs and might be a novel potential leading compound for further development of antifungal agents. The results obtained in the study will be very helpful for further design and structural optimization of calycanthaceous alkaloids as potential agrochem. lead for plant disease control.
Electric Literature of 771-51-7, 3-Indoleacetonitrile is a plant growth activator, which promotes callus growth and shoot formation in tobacco callus.
3-Indoleacetonitrile (Indolylacetonitrile) is a light-induced auxin-inhibitory substance that is isolated from light-grown cabbage (Brassica olearea L.) shoots. It inhibits the biofilm formation of both E. coli O157:H7 and P. aeruginosa without affecting its growth.
3-Indoleacetonitrile, also known as 3-(cyanomethyl)indole or IAN, belongs to the class of organic compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. 3-Indoleacetonitrile exists as a solid and is considered to be practically insoluble (in water) and relatively neutral. Within the cell, 3-indoleacetonitrile is primarily located in the mitochondria. 3-Indoleacetonitrile participates in a number of enzymatic reactions. In particular, 3-indoleacetonitrile can be biosynthesized from acetonitrile. 3-Indoleacetonitrile is also a parent compound for other transformation products, including but not limited to, cys(ian)-gly, gammaglucys(ian), and L-cys(ian). Outside of the human body, 3-indoleacetonitrile can be found in a number of food items such as cloudberry, japanese persimmon, horned melon, and evergreen huckleberry. This makes 3-indoleacetonitrile a potential biomarker for the consumption of these food products.
Indole-3-acetonitrile is a nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a 1H-indol-3-yl group. It has a role as an auxin, a plant hormone, a plant metabolite and a human xenobiotic metabolite. It is a nitrile and a member of indoles. It derives from an acetonitrile., 771-51-7.
Referemce:
Indole alkaloid derivatives as building blocks of natural products from Bacillus thuringiensis and Bacillus velezensis and their antibacterial and antifungal activity study,
Preparation of Indole Containing Building Blocks for the Regiospecific Construction of Indole Appended Pyrazoles and Pyrroles